

An Energy Efficiency Workshop & Exposition

Kansas City, Missouri

Energy Savings Performance Contracts

The Integrated Approach to Upgrading EPA's NVFEL Ann Arbor, Michigan

Ann Arbor, MI NVFEL Lab

NVFEL: Background

- 135,000-square-foot high-bay testing lab
- Requires ventilation, high heat loads
- Highest EPA energy consumer (BTU/sf)
 - > 2.5 MW/year
 - > \$1 million/year in energy costs
- Potential showcase facility
- Insufficient funds to replace 30-year-old infrastructure through traditional means

- Energy services company (ESCO) uses private funds to incorporate energy conservation measures in a federal building
 - Designs
 - > Installs
 - Operates
 - Maintains
- No up-front capital investment from the government
- ESCO's investment repaid over time from resulting energy cost savings

ESPCs: How They Work

- All ESPCs are firm-fixed-price contracts
- ESCO assumes risk for meeting guaranteed energy cost savings
- Payments
 - Made from funds that would have been used for energy and energy-related expenses
 - Annual total (to ESCO and utility) cannot exceed prior energy cost
 - Monthly payments begin after measures in place
- ESCO retains the rights to the equipment it installs until the end of the contract

- In addition to saving energy, ESPCs save money for the government
 - Energy savings = cost savings
 - > At today's energy prices, even higher savings
 - ESCO assumes O&M and repair costs
- Preferable to individually contracted projects
 - More costly
 - Time-consuming
 - Projects go undone if competing for limited funds

Ann Arbor's ESPC Advantage

- Reduces energy, water, pollution, and costs
 - Electricity: 52% reduction projected
 - Water: 81% reduction projected
 - ightharpoonup Emissions: $CO_2 = 57\%$; $SO_2 = 53\%$; $NO_X = 54\%$
 - ➤ Utility costs: More than 50% (\$2 million to \$800,000)
- Helps meet federal energy reduction requirements
 - Energy Policy Act/Executive Order 12902
 - > 20% by 2000; 30% by 2005; 35% by 2010
- Restores obsolete and aging infrastructure
 - All upgrades would not have been made without it
 - Would not be as successful if done piecemeal

Ann Arbor ESPC Highlights

- \$10.6 million high-efficiency HVAC overhaul
 - > 36 rooftop air handling units replace previous ones
 - Natural gas chiller/heaters improve efficiency and reduce reliance on electric utility
 - Absorbers revive a proven energy efficiency technology to provide both heat and cooling, replacing a steam boiler and electric chiller
 - Compact cooling tower uses less space
- 200-kilowatt natural gas fuel cell
- Double enthalpy recovery

Rooftop Air Handling Units

Natural Gas Boiler

Absorber

Compact Cooling Tower

June 3-6, 2001

200-kW Natural Gas Fuel Cell

Double Enthalpy Recovery

NVFEL Electricity Use

Electricity Consumption

NVFEL Natural Gas Use

Gas Consumption

NVFEL Electricity Costs

NVFEL Natural Gas Costs

Monthly Gas Bill

NVFEL Natural Gas Prices

Cost/CCF Burnertip

NVFEL Electricity Costs

Electricity Costs Without an ESPC

NVFEL Natural Gas Costs

Monthly Gas Bill Without an ESPC

NVFEL Total Energy Costs

Ann Arbor NVFEL Annual Energy Costs Without an ESPC

Lessons Learned in Ann Arbor

- Think outside the box
 - Question conventional wisdom
 - Example: Dramatic savings resulted from recirculating air
- Be realistic in planning for downtime
 - Construction will disrupt operation
 - Many factors affect construction
 - Local labor market
 - Weather

Lessons Learned, continued

- Communicate with customers
 - Employees need to know what, when, why, how long, and results
 - More buy-in = lower frustration levels
- Commit (human) resources to the project
 - Easy to underestimate the time needed
 - Spend a lot of time putting out fires
 - Leave time for employee outreach

Future ESPCs: Ada, Oklahoma

- Replicate Ann Arbor in more traditional lab
- Using DOE's Super ESPC
- Shorter lead time
 - 16 months from project award to completion
 - Versus 30 months for Ann Arbor
- Drilling 175 geothermal wells (completed)
- Construction completion projected for January 2002
- Anticipated energy use reduction: 60%

Ada, OK ESPC Under Way

June 3-6, 2001

www. energy2001.ee.doe.gov

JAN 18 2001